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I. VORTEX ENERGY

We wish to first calculate the energy of a single vortex and then the interaction energy of two vortices.
This will also allow us to calculate the force of interaction between two vortices, and finally the force
exerted on a vortex by a transport current. All of this will be done in the extreme type-II limit κ >> 1
in which we effectively ignore the core of the vortex.

The energy per unit length of a vortex can be shown to be

W ′
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2µ0

∫∫
s⊥

h⃗(r⃗) · V⃗ (r⃗)d2r, where h⃗ is the magnetic field created by the vortices and V⃗ is their

vorticity. Since the magnetic field of the single vortex came from solution of a linear equation, we shall
assume that the vorticity and magnetic field can be formed from a linear superposition of single-vortex
solutions in the case of multi-vortex problems.

For a single vortex, this evaluates to,
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K0(ξGL/λeff ), where the Hankel function is evaluated at the edge of the core because

the magnetic field is essentially the same at r = 0 as at r = ξGL. In the extreme type-II limit, the
argument of K0 is small, giving K0(x) ∼ ln(1/x) for x << 1. This yields,
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ln(κ).

Note that the energy to create a vortex goes to zero as T approaches Tc (because λeff → ∞), leading
to a proliferation of vortex loops. This is one picture for how the superconductor to normal phase
transition occurs in three dimensions. In two dimensions it is the first step in the Kosterlitz-Thouless
phase transition.

II. VORTEX INTERACTIONS

Two vortices a distance ℓ apart will have a total energy per unit length,
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K0(ℓ/λeff ). The first term is twice the self-energy of a

vortex, while the second term is the interaction energy of the two vortices. The ± denotes the case of
parallel (+) and anti-parallel (−) vortices. Like vortices repel, while opposites attract.

The interaction force can be deduced from the distance dependence of the interaction energy,

f⃗12 = −∂W ′
2 vortices/∂ℓ = ± Φ2

0
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K1(ℓ/λeff ). This expression is proportional to the current created

at vortex 2 by vortex 1: J⃗12. It can be written as a Lorentz-like force as,

f⃗12 = J⃗12 × Φ0ẑ

If we imagine super-imposing two like vortices so that they share the same z axis, this will create
a doubling of the magnetic field and currents, as well as a doubling of the vorticity. Since the energy

scales as W ′
vortex ∝

∫∫
s⊥

h⃗(r⃗) · V⃗ (r⃗)d2r, it will increase by a factor of 2 × 2 = 4 compared to a single-

flux-quantum vortex. This is much more energetically costly than just having two single-flux-quantum
vortices a few λeff away from each other. Hence ’giant vortices’ are rarely encountered, and such vortices
tend to dissolve into a collection of single-Φ0 vortices.

Note that if a vortex and anti-vortex super-impose, the superconducting electron density velocity
field, as well as the magnetic fields, completely cancel out! This process is known as vortex-antivortex
annihilation. The energy of the two vortices is then converted into quasiparticle excitations or phonons,
and is essentially dissipated as ’heat’. It is possible to image trains of vortices and antivortices colliding
and annihilating in a current-carrying superconducting strip, and several images, as well as a movie, are
available on the class web site.


